Note: Hindus made the best swords in the ancient world, they discovered the process of making Ukku steel, called Damascus steel by the rest of the world (Damas meaning water to the Arabs, because of the watery designs on the blade). These were the best swords in the ancient world, the strongest and the sharpest, sharper even than Japanese katanas. Romans, Greeks, Arabs, Persians, Turks, and Chinese imported it.
The original Damascus steel - the world's first high-carbon steel - was a product of India known as wootz. Wootz is the English for ukku in Kannada and Telugu, meaning steel. Indian steel was used for making swords and armor in Persia and Arabia in ancient times. Ktesias at the court of Persia (5th c BC) mentions two swords made of Indian steel which the Persian king presented him. The pre-Islamic Arab word for sword is 'muhannad' meaning from Hind. So famous were they that the Arabic word for sword was Hindvi - from Hind.
Wootz was produced by carburizing chips of wrought iron in a closed crucible process.
"Wrought iron, wood and carbonaceous matter was placed in a crucible and heated in a current of hot air till the iron became red hot and plastic. It was then allowed to cool very slowly (about 24 hours) until it absorbed a fixed amount of carbon, generally 1.2 to 1.8 per cent," said eminent metallurgist Prof. T.R. Anantharaman, who taught at Banares Hindu University, Varanasi.
"When forged into a blade, the carbides in the steel formed a visible pattern on the surface."
To the sixth century Arab poet Aus b. Hajr the pattern appeared described 'as if it were the trail of small black ants that had trekked over the steel while it was still soft'. In the early 1800s, Europeans tried their hand at reproducing wootz on an industrial scale. Michael Faraday, the great experimenter and son of a blacksmith, tried to duplicate the steel by alloying iron with a variety of metals but failed.
Some scientists were successful in forging wootz but they still were not able to reproduce its characteristics, like the watery mark.
"Scientists believe that some other micro-addition went into it," said Anantharaman.
"That is why the separation of carbide takes place so beautifully and geometrically."
The crucible process could have originated in south India and the finest steel was from the land of Cheras, said K. Rajan, associate professor of archaeology at Tamil University, Thanjavur, who explored a 1st century AD trade centre at Kodumanal near Coimbatore. Rajan's excavations revealed an industrial economy at Kodumanal. Pillar of strength The rustless wonder called the Iron Pillar near the Qutb Minar at Mehrauli in Delhi did not attract the attention of scientists till the second quarter of the 19th century.
The inscription refers to a ruler named Chandra, who had conquered the Vangas and Vahlikas, and the breeze of whose valour still perfumed the southern ocean. "The king who answers the description is none but Samudragupta, the real founder of the Gupta empire," said Prof. T.R. Anantharaman, who has authored The Rustless Wonder. Zinc metallurgy travelled from India to China and from there to Europe. As late as 1735, professional chemists in Europe believed that zinc could not be reduced to metal except in the presence of copper.
The alchemical texts of the mediaeval period show that the tradition was live in India. In 1738, William Champion established the Bristol process to produce metallic zinc in commercial quantities and got a patent for it. Interestingly, the mediaeval alchemical text Rasaratnasamucchaya describes the same process, down to adding 1.5 per cent common salt to the ore. (source: Saladin's sword - By The Week - June 24, 2001 -
http://netinfo.hypermart.net/telingsteel.htm).
Bookmarks